

Reg. No.:....

Name :

Sixth Semester B.Sc. Degree (C.B.C.S.S. – OBE – Regular/Supplementary/
Improvement) Examination, April 2025
(2019 to 2022 Admissions)
CORE COURSE IN MATHEMATICS
6B13 MAT: Linear Algebra

Time: 3 Hours Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark.

 $(4 \times 1 = 4)$

- 1. Define vector space.
- 2. What is the dimension of the vector space of all 2 \times 2 symmetric matrices over \mathbb{R} ?
- 3. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear, T(1, 0) = (1, 4), and T(0,1) = (2,5). What is T(2, 3)?
- 4. Find the eigenvalues of the matrix $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$.
- 5. Let A be a 3×3 matrix, with eigenvalues 1, 0, 2. Find determinant of A.

PART - B

Answer any eight questions. Each question carries two marks. (8×2=16)

- 6. Let V be a vector space over \mathbb{F} . Show that for each element x in V, there exist a unique element y in V such that x + y = 0.
- 7. Let $M_{n\,\times\,n}\left(\mathbb{F}\right)$ be the set of all $n\times n\text{-matrices}$ over $\mathbb{F}.$ Show that

$$S = \{A \in \ M_{n \times n} \ (\mathbb{F}) \mid tr(A) = 0\} \text{ is a subspace of } M_{n \times n} \ (\mathbb{F}).$$

8. Let V be a vector space over \mathbb{F} . Show that 0.x = 0 for each $x \in V$.

K25U 0161

-2-

- 9. Check whether the set $\{(1, -1, 2), (1, -2, 1), (1, 1, 4)\}$ is linearly independent or not.
- 10. Let $V = M(2, \mathbb{R})$, the set of all 2×2 -matrices over \mathbb{R} and let 10. Let $V = W(Z, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, the set Z = 0 $W = \left\{ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in V \middle| a_{11} + a_{12} = 0 \right\}$. Find a basis of W.

 11. Find the rank of a matrix A, where $A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 2 & 1 \\ 0 & -1 & 4 \end{bmatrix}$.
- 12. Show that $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x, x + y) is a linear transformation.
- 13. Explain the condition for consistency and nature of solution of a non-homogeneous linear system of equations Ax = B.
- 14. Let A be a 2×3 matrix and B be a 3×3 matrix with rank (A) = 2 and rank(B) = 3. Find rank(AB).
- 15. Find the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$.
- 16. Prove that the eigenvalues of an idempotent matrix are either zero or unity.

Answer any four questions. Each question carries four marks.

 $(4 \times 4 = 16)$

- 17. Using example, show that union of two subspaces of a vector space need not be a subspace.
- 18. If V is a vector space generated by a finite set S, then show that some subset of S is a basis for V.
- 19. Find a basis and dimension of the subspace $W = \{A \in M_{2\times 2}(\mathbb{R}) | tr(A) = 0\}$ of $M_{2\times 2}(\mathbb{R})$.
- 20. Let T: $V \rightarrow W$ be a linear transformation. Show that T is one-one if and only if $N(T) = \{0\}.$

- 21. Let $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ be a linear transformation defined by T(f(x)) = (2-x)f(x). Find the matrix of T with respect to the standard basis of P_2 and P_3 .
- 22. Let T be the linear operator on \mathbb{R}^3 , the matrix of which in the standard ordered $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

Let I be the line...

basis is $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$ find T(x, y, z).

23. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$ and find its inverse.

PART -/D

Answer any two questions. Each question carries six marks.

 $(6 \times 2 = 12)$

- 24. Let W_1 and W_2 be subspaces of a vector space V. Prove that V is the direct sum of W_1 and W_2 if and only if each vector in V can be uniquely expressed as $x_1 + x_2$, where $x_1 \in W_1$ and $x_2 \in W_2$.
- 25. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then show that $S \cup \{v\}$ is linearly dependent if and only if $v \in Space(S)$.
- 26. Let V and W be vector spaces and T : $V \rightarrow W$ be linear. Prove that N(T) and R(T) are subspaces of V and W respectively.
- 27. Find the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ and hence find